

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2018
Lab 05 – Lists

Assignment: Lab 05 – Lists
Due Date: Thursday, October 4th by 8:59:59 PM
Value: 10 points

This week’s lab will put into practice the concepts you learned about lists:
indexing, mutating, and traversing. It will also make use of while loops, both

to get input from the user, and to traverse the contents of the list.

(Having concepts explained in a new and different way can often lead to a
better understanding, so make sure to pay attention as your TA explains.)

CMSC 201 – Computer Science I for Majors Page 2

Part 1A: Review – Sentinel While Loops

One way to use a while loop is as a sentinel loop. A sentinel loop continues

to process data until reaching a special value that signals the end of the data.
The special value is called the sentinel.

Here is the pseudocode for a sentinel loop in Python:

Get the first data item from the user

While data item is not the sentinel

 Process the data item

 Get the next data item from the user

One of the scenarios in which we can implement this type of loop is a version
of our grocery list program that allows us to enter as many items as we like.
Although it is similar to previous versions, the interactive (sentinel) while loop
of the grocery list program allows us to enter as many items as we like until the
sentinel value of "exit" is entered.

SENTINEL = "exit"

def main():

 # initialize the list to be empty

 grocery_list = []
 # get the initial user value

 msg = "Enter an item, or '" + SENTINEL + "' to end: "

 userVal = input(msg)

 # run the while loop until the user enters "exit"

 while userVal != SENTINEL:

 grocery_list.append(userVal)

 # get another value from the user

 userVal = input(msg)

 print("Remember to buy", grocery_list)

main()

CMSC 201 – Computer Science I for Majors Page 3

Part 1B: Review – Lists and Indexing

Lists are an easy way to hold lots of individual pieces of data without needing
to make lots of variables. They are a type of data structure, which are
specialized ways of organizing and storing data.

In order to get a specific variable, or element, from a list, we need to access
that index of the list. NOTE: Lists don’t starting counting from 1 – the first
element in the list is at index 0.

For example, the following line of code creates a list called names:

names = ["Aya", "Brad", "Carlos", "David", "Emma"]

Which creates the list (called names) below:

Aya Brad Carlos David Emma

0 1 2 3 4

You can access individual elements of the list with similar bracket syntax:

displays the string David to the screen

print(names[3])

You can also make in-place edits to a single element of the list by using the
bracket syntax, and an assignment operator:

names[3] = "Stella"

The above line of code of code will update names like so:

Aya Brad Carlos Stella Emma

0 1 2 3 4

CMSC 201 – Computer Science I for Majors Page 4

Part 1C: Review – Traversing Lists

Looking at the contents of a list is also known as traversing the list, and can
be done using a basic while loop. In the loop, we use a variable to keep

track of which item in the list we are looking at by having it store the index of
that item. As we move on to the next item, that variable is incremented, until
we reach the end of the list.

The length of the list is an important property, as it is used to tell the while

loop when to stop traversing the list. The length can be gotten by using the
len() function.

For example, this code would traverse the names list above, printing out that

each person is awesome:

this variable can be called anything

it starts at zero because that's the first index

index = 0

while index < len(names):

 print(names[index], "is awesome!")

 index += 1

CMSC 201 – Computer Science I for Majors Page 5

Part 1D: Review – Mutating Lists

Lists can also be “mutated” – we can add and remove items from them as
many times as we want. This means that we can start off with an empty list
(denoted with square brackets: newList = []) and fill it as necessary.

Adding something to a list is easy to do: simply place the new item at the end
of the list, using the .append() method. The following line of code adds a

few items to a list called newList:
newList.append("A Thing")

newList.append(1.37)

newList.append(0)

newList.append(False)

After we run these lines of code, our list would look like this:

"A Thing" 1.37 0 False

0 1 2 3

To remove items from the list, we use the appropriately named .remove()

method. The .remove() method takes in what we want to remove, not

where it is in the list. For example, if we call it and ask it to remove 0, it will
remove the third element, the integer 0, and not the string "A Thing", which is
stored at index 0.

newList.remove(0)

"A Thing" 1.37 False

0 1 2

The .remove() method also updates the indexes of anything after the

removed element, so that our list looks like a regular list after the element was
deleted. (In other words, notice how the index at which False is stored

changes from 3 before the removal to 2 afterwards.)

CMSC 201 – Computer Science I for Majors Page 6

Part 2: Exercise

In this lab, you’ll be creating one file, lights.py, but you’ll be creating it in

four steps. That way, you can focus on each of the steps needed one by one.

The program you’ll be coding will display different options for light switches,
and will allow users to flip any of these switches, using the numbers printed
next to each one. Once the user is done flipping switches, your program will
print out each switch and whether or not it was flipped.

Tasks

 Create a lights.py file

 Write the code to print out the light switches
 Write the code to get flips from the user
 Write code to actually flip the switch the user chooses
 Write the code to print out the switches when the user is done

 (You should run and test your lights.py file after each step)

 Submit your work via the submit system

CMSC 201 – Computer Science I for Majors Page 7

Part 3A: Creating Your File

First, create the lab05 folder using the mkdir command -- the folder needs

to be inside your Labs folder as well. (If you need a reminder of how to

create and navigate folders, go to office hours or refer to the instructions for
Lab 1.)

Next, create a Python file called lights.py using the “touch” command in

GL.
The “touch” command creates a new blank file, but doesn’t open it.

Once a file has been “touched”, you can open and edit it using emacs.
 touch lights.py

 emacs lights.py

The first thing you should do with any new Python file is create and fill out the
comment header block at the top of your file. Here is a template:

File: FILENAME.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 8

Part 3B: Printing the Lights

This is the first of four steps that must be completed for this lab.
The first step is to copy in the list of switch states for five lights, and to write
code that will print out the different choices.

Copy the list below into your program’s main():
list of 5 switch states

switches = [False, False, False, False, False]

To print the choices, you should write a while loop that will print out the

following two things on each line:

• The number of the choice (with the count starting at 1, not 0!)

• The “before” state of all of the lights (whether or not they are on)
o True means on, and False means off

o For this part, they should all be off!

Here is some sample output for this part of the program.
(Yours should match this word for word.)

linux1[8]% python3 lights.py

Switches before:

Light 1 is off.

Light 2 is off.

Light 3 is off.

Light 4 is off.

Light 5 is off.

Once this part of the program works correctly, move on to the next step.

Having trouble making the numbering start at 1 instead of 0?
Remember that the index of a list begins counting at 0. If you are printing the
current index as the number, your printing will start at 0. In order to start
counting at 1, you will need to print something like index + 1.

CMSC 201 – Computer Science I for Majors Page 9

Part 3C: Flipping the Switch(es)

This is the second of four steps that must be completed for this lab.
Now that the code to set and display the switches is complete, we need to allow
the user to actually flip them!

For now, we won’t worry about actually changing the state of each switch. Just
write the code that will allow the user to “flip” a switch by picking the number of
the switch to flip, and that will stop when they enter a “0” instead.
For this lab, you can assume the user will always enter a valid light switch
number (1 – 5 inclusive, or 0 to quit).

Here is some sample output, with the user input in blue.
(Yours does not have to match this word for word, but it should be similar.)

linux1[9]% python3 lights.py

Switches before:

Light 1 is off.

Light 2 is off.

Light 3 is off.

Light 4 is off.

Light 5 is off.

Enter a switch to flip (0 to stop): 1

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 5

Enter a switch to flip (0 to stop): 4

Enter a switch to flip (0 to stop): 3

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 3

Enter a switch to flip (0 to stop): 0

Once this part of the program works correctly, move on to the next step.

Are you stuck on how to interact with the user?
Take a look at the example on page 2 of a sentinel loop (an interactive while

loop with a clear stop condition). You should use the same basic code setup to
allow the user to keep flipping switches until they choose to quit by entering “0”.

CMSC 201 – Computer Science I for Majors Page 10

Part 3D: Storing Flips

This is the third of four steps that must be completed for this lab.
Now that you can accept flips, we need to store them. We already have a list
that stores the state of each of the five switches, so you must now update that
list in-place to store the correct state!

For example, if the user flipped the 2nd light three times, the 4th light once, and
5th light twice, the switch list would look like:

switches= False True False True False

index 0 index 1 index 2 index 3 index 4

Remember, list indexing starts at 0, but we’re presenting the choices to the user
starting at 1, so the way the program assigns flips to each light switch will need
to compensate for this offset.

At the end, print out the list of switches, so you can ensure your program is
working correctly. (Simply use print("Switches:", switches) in your

code.)

Here is some sample output, with the user input in blue.

We’ve removed the list of switches at the beginning to save space,

but it should still be present in your output.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python lights.py

[[Switches should be displayed here]]

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 4

Enter a switch to flip (0 to stop): 5

Enter a switch to flip (0 to stop): 5

Enter a switch to flip (0 to stop): 0

Switches: [False, True, False, True, False]

CMSC 201 – Computer Science I for Majors Page 11

Part 3E: Printing Out the Results

This is the last of four steps that must be written for this lab.
This last step is relatively simple, as you’ve already done it once. For this step,
we’ll display the final switch states for each light. (If your code that asks for and
stores switch flips doesn’t work correctly, you might also have to do some
debugging. That’s how programming works, sometimes!)

Once the user has entered “0” in order to stop flipping, you need to go through
the list one more time and print out final state of each one.

Also, remove the line of code that prints out the list of switches from the last step!

Here is some sample output, with the user input in blue.
We’ve removed the list of switches at the beginning to save space.
(Yours does not have to match this word for word, but it should be similar.)

bash-4.1$ python lights.py

[[Switches should be displayed here]]

Enter a switch to flip (0 to stop): 3

Enter a switch to flip (0 to stop): 5

Enter a switch to flip (0 to stop): 4

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 2

Enter a switch to flip (0 to stop): 3

Enter a switch to flip (0 to stop): 1

Enter a switch to flip (0 to stop): 1

Enter a switch to flip (0 to stop): 0

Switches after:

Light 1 is off.

Light 2 is off.

Light 3 is off.

Light 4 is on.

Light 5 is on.

CMSC 201 – Computer Science I for Majors Page 12

Part 4: Completing Your Lab

Since this is an online lab, you will need to use the submit command to

complete your lab.

To submit your file (due Thursday, October 4th, 2018 by 8:59:59 PM), use
the command:

linux1[4]% submit cs201 LAB5 lights.py

Submitting lights.py...OK

linux1[5]% █

If you don’t get a confirmation like the one above, check that you have not
made any typos or errors in the command.

Tasks

 Create a lights.py file

 Write the code to print out the light switches
 Write the code to get flips from the user
 Write code to actually flip the switch the user chooses
 Write the code to print out the switches when the user is done

 (You should run and test your lights.py file after each step)

 Submit your work via the submit system

	Part 1A: Review – Sentinel While Loops
	Part 2: Exercise
	Tasks

	Part 3A: Creating Your File
	Part 3B: Printing the Lights
	Once this part of the program works correctly, move on to the next step.
	Part 3C: Flipping the Switch(es)
	Once this part of the program works correctly, move on to the next step.
	Part 3D: Storing Flips
	Part 4: Completing Your Lab
	Tasks

